Inventors:
Michael C. Wells - San Antonio TX, US
Mark Parker - Houston TX, US
Daniel J. Clarius - Missouri City TX, US
Andrew Parker - Missouri City TX, US
Faraidoon Pundole - Sugar Land TX, US
Tom Woods - Friendswood TX, US
Mark Niederauer - San Antonio TX, US
International Classification:
A61M 37/00
Abstract:
A non-invasive tissue oxygenation system for accelerating the healing of damaged tissue and to promote tissue viability is disclosed herein. The system is comprised of a lightweight portable electrochemical oxygen concentrator, a power management system, microprocessors, memory, a pressure sensing system, an optional temperature monitoring system, oxygen flow rate/oxygen partial pressure monitoring and control system, a display screen and key pad navigation controls as a means of providing continuous variably controlled low dosages of oxygen to a wound site and monitoring the healing process. A kink resistant oxygen delivery tubing, whereby the proximal end is removably connected to the device and the distal end with holes or a flexible, flat, oxygen-permeable tape is positioned at or near the wound bed as a means of applying near 100% pure oxygen to the wound site. The distal end of the tube is in communication with the electrochemical oxygen concentrator and wound monitoring system to communicate oxygen partial pressure and, where appropriate, temperature information. A moisture absorbent dressing is positioned over the distal end of the tubing at the wound site and a reduced moisture vapor permeable dressing system is positioned whereby covering the moisture absorbent dressing, distal end of tubing and wound site creating a restricted or occluded airflow enclosure. The restricted airflow enclosure allows the out-of-the-way control and display unit to provide a controlled hyperoxia and hypoxia wound site for accelerated wound healing.